skip to main content


Search for: All records

Creators/Authors contains: "Du, Zhonghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available May 28, 2024
  3. We report the first experimental demonstration of a vertical superjunction device in GaN. P-type nickel oxide (NiO) is sputtered conformally in 6μm deep n-GaN trenches. Sputter recipe is tuned to enable 1017 cm −3 level acceptor concentration in NiO, easing its charge balance with the 9×1016 cm −3 doped n-GaN. Vertical GaN superjunction p-n diodes (SJ-PNDs) are fabricated on both native GaN and low-cost sapphire substrates. GaN SJ-PNDs on GaN and sapphire both show a breakdown voltage (BV) of 1100 V, being at least 900 V higher than their 1-D PND counterparts. The differential specific on-resistance (RON,SP) of the two SJ-PNDs are both 0.3mΩ⋅ cm 2 , with the drift region resistance (RDR,SP) extracted to be 0.15mΩ⋅ cm 2 . The RON,SP∼BV trade-off is among the best in GaN-on-GaN diodes and sets a new record for vertical GaN devices on foreign substrates. The RDR,SP∼BV trade-off exceeds the 1-D GaN limit, fulfilling the superjunction functionality in GaN. 
    more » « less
  4. Abstract

    Multidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunableNAfrom < 1018 cm−3to 2×1018 cm−3with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. ThisNArange allows for charge balance to n‐type region with reasonable process latitude, andEBis high enough to pair with many WBG and UWBG semiconductors. The extractedNAis then used to design a multidimensional Ga2O3diode with NiO field‐modulation structure. The diodes fabricated with two differentNAboth achieve 8000 V breakdown voltage and 4.7 MV cm−1average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    Artificial neuronal devices are critical building blocks of neuromorphic computing systems and currently the subject of intense research motivated by application needs from new computing technology and more realistic brain emulation. Researchers have proposed a range of device concepts that can mimic neuronal dynamics and functions. Although the switching physics and device structures of these artificial neurons are largely different, their behaviors can be described by several neuron models in a more unified manner. In this paper, the reports of artificial neuronal devices based on emerging volatile switching materials are reviewed from the perspective of the demonstrated neuron models, with a focus on the neuronal functions implemented in these devices and the exploitation of these functions for computational and sensing applications. Furthermore, the neuroscience inspirations and engineering methods to enrich the neuronal dynamics that remain to be implemented in artificial neuronal devices and networks toward realizing the full functionalities of biological neurons are discussed.

     
    more » « less
  7. Abstract

    Anisotropic photonic materials with linear dichroism are crucial components in many sensing, imaging, and communication applications. Such materials play an important role as polarizers, filters, and waveplates in photonic devices and circuits. Conventional crystalline materials with optical anisotropy typically show unidirectional linear dichroism over a broad wavelength range. The linear dichroism conversion phenomenon has not been observed in crystalline materials. The investigation of the unique linear dichroism conversion phenomenon in quasi‐1D hexagonal perovskite chalcogenide BaTiS3is reported. This material shows a record level of optical anisotropy within the visible wavelength range. In contrast to conventional anisotropic optical materials, the linear dichroism polarity in BaTiS3makes an orthogonal change at an optical wavelength corresponding to the photon energy of 1.78 eV. First‐principles calculations reveal that this anomalous linear dichroism conversion behavior originates from the different selection rules of the parallel energy bands in the BaTiS3material. Wavelength‐dependent polarized Raman spectroscopy further confirms this phenomenon. Such a material, with linear dichroism conversion properties, could facilitate the sensing and control of the energy and polarization of light, and lead to novel photonic devices such as polarization‐wavelength selective detectors and lasers for multispectral imaging, sensing, and optical communication applications.

     
    more » « less